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Dirac chains in the presence of hairpins
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We study semiflexible polymers of arbitrary stiffness subject to nematic and non-nematic elongation
forces. The presence of nematic forces is found to cause the formation of hairpins. [A hairpin is an im-
mediate return (or a sharp bend) of a chain in the nematic ordering field.] An analysis of the path in-
tegrals for semiflexible (Dirac) chains with these elongational forces indicates that the distribution func-
tions describing these induced hairpins satisfy the Whittaker-Hill (WH) equation in two dimensions.
The same equation describes hairpins in three dimensions if (and only if) the Dirac monopole term is in-
cluded in the corresponding path integral. The solutions of the WH equation indicate that the non-
nematic stretching force can only have discrete values corresponding to the sequential destruction of
hairpins. This discreteness disappears when the nematic force is absent, as demonstrated in previous
work [A. Kholodenko and T. Vilgis, Phys. Rev. E 50, 1257 (1994)]. We also indicate how the hairpin
problem is related to other statistical mechanical problems of interest: commensurate-incommensurate
transitions, quantum spin chains, Landau-Lifshitz equation, rotational Brownian motion, strings with ri-

OCTOBER 1995

gidity, etc.

PACS number(s): 61.41.+¢, 11.10.—z, 75.10.Jm

I. INTRODUCTION AND SUMMARY

The elastic response of polymeric materials has been
considered in great detail during the last few decades.
The basic idea was to study a weakly interacting ensem-
ble of (crosslinked) polymers where the elastic response of
the entire ensemble can be mapped onto the behavior of a
single chain. In most studies the single chain has been
modeled by a Gaussian random walk with no intrinsic
flexibility. Real chains are non-Gaussian and local
stiffness is important. Especially in liquid crystalline po-
lymers the stiffness is so large (at certain temperatures)
that the persistence length could be of the order of the
chain size. In this limit the Dirac propagator can be used
for such a chain [1].

Recently, we have studied the elastic response of the
Dirac chain to elongation forces of non-nematic origin
[1], i.e., for the ordering field-free case. Dirac chains are
believed to reproduce correctly conformational proper-
ties of semiflexible polymers of arbitrary stiffness: from
random coils to rigid rods (e.g., see [2], and references
therein). Use of the Dirac chains complements the re-
sults of classical elasticity theory of simple ideal Gaussian
chains and networks [3] which are valid in the limit of
small bending energies. In [1] we found that the elonga-
tion as a function of non-nematic force for the Dirac
chain is described in terms of the same type of Langevin
function which was derived earlier for the random flight
models [3]. Stretching of polymer chains subject to hy-
drodynamic elongational flow or magnetic-type forces
has been studied experimentally in [4], while stretching
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due to both nematic and non-nematic forces simultane-
ously does not seem to have been experimentally investi-
gated before. This type of stretching was recently dis-
cussed theoretically in [5] in connection with de Gennes’s
hairpin problem [6] and earlier by Jahnig [7]. A hairpin
is the immediate return (or a sharp bend) of the chain in
the nematic ordering field. Hairpins were observed ex-
perimentally quite recently in the absence of non-nematic
forces [8]. Theoretically, the combination of nematic and
non-nematic stretching superimposed with confinement
of the polymer solution between the parallel plates was
also recently considered in [9] without use of path in-
tegrals, while in [10] the conformational statistics proper-
ties of single chains of arbitrary flexibility were studied in
confined geometries by using the Dirac propagator. In
this paper we study the Dirac chain subject to nematic
and non-nematic force perturbations. As a result, the
problem of hairpins is being reexamined and many new
and unexpected aspects of the hairpin problem are
discovered and discussed in some detail. These single
chain results are required for development of a theory of
elasticity of networks of semiflexible chains which is left
for future investigation.

This paper is organized as follows. In Sec. II we pro-
vide general background and a statement of the problem.
Here we demonstrate that the existing hairpin model of
Gunn and Warner [5] can be rigorously obtained from
the one-dimensional (1D) Ising model in an external
“magnetic” field which, in turn, is also a discrete model
analog for the (1-+1)-dimensional Dirac propagator in-
dependently obtained in [11]. Because the 1D Ising mod-
el is isomorphic to the quantum mechanical double well
problem [12], the problem of hairpins is analogous to the
problem of domain wall formation along the one-
dimensional Ising chain [13,14]. With respect to the
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Dirac chain, the problem arises: How is the elasticity pa-
rameter (i.e., the inverse of the mass of the Dirac “parti-
cle” [11]) renormalized in the presence of the nematic en-
vironment? With respect to the existing continuum path
integral treatments [13,15,16] of semiflexible chains the
further problem arises: Under what conditions are these
integrals reducible to that for the 1D Ising model? Final-
ly, we investigate what (if any) is the relationship between
these path integrals and those for the Dirac propagator.
In Sec. III we discuss an analogy between the existing
path integrals for hairpins and that for the quantum and
classical XXZ chains. Because the quantum XXZ chain is
isomorphic to the massive. Thirring model [17,18],
which is the (14 1)-dimensional massive Dirac field with
quartic self-interaction, we conclude that the de Gennes
hairpin problem can be, in principle, solved exactly, be-
cause the massive Thirring model admits an exact solu-
tion [17]. The exact solution for the Thirring model is,
however, not too physically illuminating. Therefore in
Sec. IV we consider a simplified version of an XXZ chain
based on the existing treatments of quantum chains in
terms of two-dimensional nonlinear o models [19] with
the Chern-Simons (CS) term. The high temperature
semiclassical limit of these models corresponds (without
the CS term) to the existing path integrals for the
semiflexible chains (in the absence of nematic coupling).
The addition of the CS term converts these integrals to
those which are related to the Dirac propagator [20]. To
explain the physics associated with addition to the CS
term, we consider in some detail a planar version of such
path integrals for which the calculations could be made
especially transparent. At the classical level the CS term
is a total ‘“time” derivative and reduces in two dimen-
sions to a winding number (which we discussed earlier in
[21]) while at the quantum path integral level it leads to a
rigidification of the polymer chain. Although the rigidity
of the chain can be controlled, without the CS term, with
help of the existing Kratky-Porod-type path integrals for
the semiflexible chains [22], its role becomes indispens-
able for the hairpin problem. In Sec. V we treat the pla-
nar problem with the CS term to illustrate this point but
this time we include terms responsible for the nematic
and non-nematic stretching. We show that the inclusion
of the nematic term leads in the planar case to a classical
action which is identical to a standard model of
commensurate-incommensurate (C-I) transitions [23,24].
This connection is only possible if the CS term is present,
which explains why the fermionic analogy in the theory
of C-I transitions is used. Additional inclusion of the
non-nematic stretching factor leads to physically unex-
pected effects. The Schrodinger-like equation corre-
sponding to this two-dimensional path integral is known
in the mathematical literature as the Whittaker-Hill
equation [25], while without non-nematic stretching the
equation is of Mathieu type [26]. Both equations are also
of the Hill type [27] and therefore the Floquet theory can
be used to solve them [28]. At the very elementary level
(without non-nematic stretching) the Taylor series expan-
sion of the nematic term produces a double well
Schrodinger-type one-dimensional equation which, as in-
dicated above, is isomorphic to the 1D Ising model, and
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therefore, to hairpins. If, however, we do not use the
Taylor series expansions, then even if initially the CS
term in the action was absent, it reappears in calculations
in the form of the Floquet exponent. Moreover, an addi-
tion of the non-nematic stretching term causes nontrivial
effects such as quantization of the non-nematic stretching
force. This quantization physically is associated with the
fact that hairpins have a well defined energy so that their
destruction is possible only discontinuously. Indeed, it is
intuitively clear that stretching of a chain with hairpins
in a nematic environment does not change its nematic en-
ergy as long as no hairpin is dissolved. Moreover, be-
cause the Mathieu-type equations exhibit chaotic
behavior [29], the values of Floquet exponents can also
have discontinuous jumps depending upon the strength of
the nematic coupling [30]. We interpret these jumps in
terms of the nematic-isotropic transition. The extent to
which this two-dimensional picture survives in three di-
mensions is discussed in Sec. VI. We demonstrate that all
two-dimensional results remain unchanged if and only if
the CS term is present in the action. Such path integrals
with the CS term and in the absence of stretching cou-
plings correspond to the Schrodinger-like equation for
the Dirac monopole [31].

In Sec. VII we include the Dirac monopole problem in
a more general type of theories. This is motivated by our
interest in nonperturbative (i.e., different from that
presented in [30]) methods of treatment of the hairpin
problem. We demonstrate at the classical level that the
mathematical equivalent of the hairpin problem without
the monopole term was solved exactly in 1859 [32] and
with the monopole term as early as 1892 [33]. These
mathematical problems were rediscovered late in the 20th
century in connection with the exactly integrable sys-
tems. The quantum versions of these results are briefly
discussed as well in this section. Finally, in Sec. VIII we
briefly show how the hairpin problem occurs in other
areas of physics, thus demonstrating its central role in re-
cent developments ranging from quantum groups to hy-
drodynamics of suspensions of aspherical particles.

II. BACKGROUND AND STATEMENT
OF THE PROBLEM

Let G(R,N) be the end-to-end distribution function.
Following de Gennes [34], the generating function Z (f)
for the polymer chain of length N in the field of force F is
given by

Z(f)= [dRG(R,N)e R, @.1)

where f=F/kzT (kyT=pB"! is the thermal energy).
According to Eq. (2.1), if G(k,N) is the Fourier trans-
form of G(R,N), then Z(f) is obviously related to
G (k,N) via replacement f<=ik. The function G (k,N)
can be calculated for chains of arbitrary stiffness using
the analogy with the directed random walk problem in
1+1 dimensions. This problem happens to be related to
the propagation of a Dirac particle in (1+1) dimensions,
as indicated before by Feynman. (The details of the
derivation can be found in [11].) The propagator equals
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G(k,N)=2cosh(mEN)+ % sinh(mEN) , (2.2a)
where m is related to the stiffness parameter as explained
after Eq. (2.9, N is the chain length, and
E’=1+k*/2m2

In [5] the dielectric response of a semiflexible polymer
chain was considered within the framework of the hair-
pin model suggested by de Gennes [6]. The authors had
obtained for Z (f) the following result:

Z(£)=2 | cosh( AN)+—§sinh( AN) |, (2.2b)
where A’=v*+¢?% v=Ff-£, p=exp(—h /kyT), with h

being the hairpin energy. The parameter ¢ is indirectly
related to the mean hairpin density 7 defined by

A= ko T2
n kBTah InZ

(2.3)
so that N/n=1/¢ [e.g., see Eq. (16) of [6]]. The bending
energy € of the continuous semiflexible chain is required
to be related to ¢ via

(2.4)

To analyze these results, the following observations are
helpful. By taking the Laplace transform of Eq. (2.2) its
physical meaning becomes more transparent. To do so,
we rewrite AN =¢NV >+ (7 /N)* taking into account
that, according to [S], (f-£€=f¢). Now let L=¢N and
m =H /N be the mean number of hairpins per unit length,
then the Laplace transformed version of Eq. (2.2b) can be
written as

s+m
k*+st—m?’

where s is the Laplace variable conjugate to L and Eq.
(2.5) is written in (d +1)-dimensional form. In the pa-
pers [2,10,11] we have demonstrated that the right-hand
side of Eq. (2.5) can be obtained from the Euclidean ver-
sion of the Dirac propagator Dy (k,s) given by

—21—L(Z(f=ik))= 2.5)

_ =i _.k—p
DE(kas> k+,u lk2+[.L2 ’
were K=3,y%,, k*=k>+s2%,y® are Euclidean-type
Dirac matrices [35] so that {y*,y"}=28"" and Try*=0
but Tr(y#)*=—1. To obtain the right-hand side of Eq.
(2.5) from Eq. (2.6) the connection between the continu-
ous and the discrete versions of the Dirac propagators is
the most helpful. As discussed in [11], and summarized
in Eq. (2.2a), the lattice version of the Dirac propagator
is obtained only if the proper averaging over the initial
directions and summation over the final directions of the
walk is made (as it is done in the continuous limit for the
Dirac particle [36]). In the continuous limit the polariza-
tion density matrix p=;(I+a,y*) is used with the prop-
erty Trp=1and a w could be assigned to properly account
for the initial and the final states. By choosing
p=1i(I+iy*), multiplying both sides of Eq. (2.6) by p,

(2.6)
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taking the trace, and writing u==im we obtain Eq. (2.5).
We would like to note that to obtain Eq. (2.5) it is actual-
ly sufficient to consider only the 1+ 1 version of the Dirac
propagator because in [5] the hairpin problem was treat-
ed only in one spatial (along the electric field) and one
“time” (contour position along the chain) dimensions.
Because of this, further simplifications are possible. For
instance, Eq. (2.2b) is directly related to the partition
function of the 1D Ising model in the presence of con-
stant “magnetic” field. This can be seen by comparison
between Eqgs. (2.2a) and (2.2b). They coincide exactly if
the following identification is made:

A’=m?2E?, (2.7)
2

— kT , 2.8)

PP—m?. (2.9)

Equation (2.2a), obtained in [11], using the discrete ana-
log of the Dirac propagator; moreover, it is the partition
function for the 1D Ising model in a magnetic field. Ac-
cording to [11], the mass parameter m is related to the
trans-gauche bending energy j as i€m =exp( —2j) where
€ is of the order of the effective monomer length. The
presence of a complex number i causes no problem be-
cause only m? enters into E? defined by Eq. (2.2a). Alter-
natively, we may use m instead of im but change k into ik
as discussed after Eq. (2.1). In any case we obtain the sim-
ple relation

m=éexp(—-2j) . (2.10)

This result formally coincides with de Gennes, Eq. (12) of
[6], if we identify our € with ¢, which is indeed useful
since “Quantitatively the chain is expected to behave as a
succession of rigid pieces, each of length ¢ [6]. Thus
the variable m acquires the meaning of the inverse of the
average distance between the hairpins. This distance can
also be obtained using Eq. (2.3) so that the parameter ¢
introduced earlier coincides with that proposed by de
Gennes.

By reformulating de Gennes’s hairpin problem in terms
of the Dirac propagator several questions remain open.
First, as was already suggested by de Gennes, the correla-
tion length ¢, which is an effective persistence length, is
related to the chain bending energy, on one hand, and to
the coupling energy between the chain alignment and the
nematic matrix alignment, on the other hand. Obviously,
the conformation of a given chain can be anywhere be-
tween the rigid rod and the random coil limit depending
upon its local bending energy as compared to the thermal
energy kzT and on the bending energy renormalization
due to the presence of other polymers (or nematic ma-
trix). The use of a single chain Dirac propagator does
not allow us to address the above issue of renormalizabili-
ty. Therefore we arrive at the second question: how can
a theory of conformational properties of a single
semiflexible chain be developed so that it can account for
the effects of the presence of other chains? Although we
have provided the general answer to this question already
in [37], here we would like to specialize on a particular
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case of a semiflexible polymer embedded in an already ex-
isting nematic environment. Such a problem was con-
sidered by several authors [5,9,13,14] in the past but no
attempt has been made to obtain the hairpin results from
more sophisticated path integral treatments. Here we
would like to provide such connections in order to ad-
dress the problems posed above.

To do so, several remarks have to be made. Because
the (1+ 1)-dimensional Dirac propagator can be obtained
from the one-dimensional Ising model [11], the same is
true for Egs. (2.2a) and (2.2b). At the same time, it is
known that the 1D Ising model is isomorphic to a two-
level quantum mechanical system [12], e.g., to a double
well problem. Thus more sophisticated path integrals
[13,15,16] should be reducible to Ising-like ones that
reproduce the double well behavior. This was noticed in
[13]. The result, Eq. (2.2b), also differs in one important
aspect from the existing path integral treatments. This is
so because Eq. (2.2) describes the conformations of
semiflexible polymers in the nematic matrix in the pres-
ence of hairpins, caused by polymer-nematic interactions
and, in addition, in the presence of the external electric
field, which plays the same role as the magnetic field in
the Ising model or the nonzero momentum in the case of
the Dirac propagator problem, e.g., see Eq. (2.8).

In our previous work [1], we had considered the elastic
response of the Dirac chain to the external elongating
fields in the absence of other chains, e.g., nematic matrix.
We had obtained a closed form analytic result for this
case. At the same time, the existing path integral treat-
ments of hairpins do not include the external elongating
fields, except Ref. [7]. References [5,14] include the
elongating fields but without use of path integrals. In the
language of the Ising model the presence of the elongat-
ing field is attributed to the magnetic field which may, in
principle, be different at each lattice site. The presence of
the field removes the characteristic degeneracy intrinsic
for the double well and the difference in treatments for
nonzero fields versus that of zero fields is of the same na-
ture as the difference in treatments of the first and the
second order phase transitions in statistical mechanics.
In the remainder of this paper we shall study different
path integral models of semiflexible chains that account
for both the nematic interactions and for the elongation
forces.

III. THE ANALOGY WITH XXZ
QUANTUM SPIN CHAINS

Traditionally, semiflexible polymers are being de-
scribed by the Kratky-Porod-type propagator given by

|

(3.1)

u(N)=u
G(uf,u,-;N)=f f[

w0)=u;

u(r)]8(u%—1)
K N du
2 fo dr

Xexp ar

In [38] it was shown that Eq. (3.1) can also be interpreted
as the partition function for the classical one-dimensional
Heisenberg model. Following Refs. [39,40], the partition
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function for this model can be written as

N d
zN=f.[=10

i

N
K X si'si

i=1

exp (3.2)

Q
41
Here d(; is an element of solid angle for the unit vector
s;. Equation (3.1) is reduced to (3.2) if instead of the con-
tinuum version the discrete version of Eq. (3.1) is con-
sidered taking into account the unit sphere constraint
u?=u-u=1, as explained in [37]. The partition function,
Eq. (3.2) can be easily calculated so that the correlation
function [37-40] is given by

In/Z(K)
In/2—l(K)

1 li—jl
(S,-'Sj>=; > (3.3)

where n is the number of components of the vector s;
(usually in 3D physics n =3 is being used, not to be con-
fused with the self-avoiding walk model, i.e., n =0), and
I,(x) is the modified Bessel function. As it was shown in
[37,40], for the physically relevant range of values of K,
we can use the asymptotic limit of Eq. (3.3),

n

(s;'s;) = exp 2;1 li—jl| . (3.4)

The situation changes dramatically in the presence of a
constant field f, i.e., if we replace the exponent in Eq.
(3.2) by the following expression:

N N
H=K 3 s;'s;_;+ 3 f's; .

i=1 i=1

(3.5)

In this case Zy and the correlation functions cannot be
calculated exactly [40]. At the same time, in previous
work [37] such exact calculation was performed for poly-
mer chains of arbitrary stiffness using the Dirac propaga-
tor. In view of this, let us consider once again the
modified partition function Z,, upon rewriting the action
in the exponent in the form given by

N N
A=K > 88178 X Sisiy
i=1 i=1
N
> Uysisiy I stst_+J,sis7_1)
i=1
where J,=J,=K and J,=K —g. The model described
by such action is known in the literature as the XXZ
model [18,23,24]. Let us study the continuum limit of
this model. To this purpose it is sufficient to write the ex-
pansion for s; [41],
ds; 2 d%,;
S,~+1=S,-+a"g;’-+22—7dx—;' e,
where a is the lattice spacing. Use of Eq. (3.7) in Eq.
(3.6) and replacement of sums by integrals produces in
the continuum limit

(3.6)

3.7

2

=l N (22
s=5 [ dr|« +2(s? |, (3.8)

ds
dr

where the constants k and g are related to the coupling
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parameters K and K-g. The model based on the action S
given by Eq. (3.8) was studied recently in connection with
the hairpin problem [13]. It was argued (without detailed
proof), that it exhibits 1D Ising-like behavior and thus it
provides an adequate description of hairpins. In connec-
tion with Eq. (3.8), it is useful to provide the alternative
versions of the hairpin actions for the latter purpose. For
example, in [15,16] instead of Eq. (3.8), an equivalent ex-
pression proposed by Warner, Gunn, and Baumgirtner
(WBG) was used,
2
+g[3(s%)*—1]

K . 39

ds
dr

1 pN
SWGB=Ef0 dT

This result was earlier discussed in [7], where an even
more general action was considered:

N
S;=Swos+f, fo drs?,

where f, is the z component of the field f=(0,0, f,).

The action, Eq. (3.10), describes the elongation due to
the external forces as well as to the presence of the
nematic environment as discussed in Sec. II. Because Egs.
(3.8)-(3.10) come from their discrete counterparts, given
by Eqgs. (3.5) and (3.6), we return to these equations once
again. The quantum spin version of the model given by
Eq. (3.6) is known as the XYZ model [18], while for
J.=J,7J, the model is known as XXZ [18,23,24]. For
completeness, we would like to provide a few details
which connect these kinds of models with Dirac fer-
mions. Given that for the quantum spin operators s;.

(s7V+(sP=sTs; +s7 s,

(3.10)

it can be shown [18] that the Hamiltonian for the XYZ
model can be written as

N
A= [(s;7 57 +s5,7 15+ s +57057)

i=1

+2A(s7_ 57— 1)] , (3.11)

where the coupling constants I and A are related to J; in
a known way.
We next introduce the spin Fourier transforms

N N

+ ikn, + = ik

sp = X es,t, si= 3 esk
n=1 n=1

such that s, =(s;")*, where * denotes complex conjuga-
tion. Finally, the creation-annihilation operators are in-
troduced via

~F S Nala,— 5 alat
Sk Sk ——>Nakak zakap+pr_kapa

P
p.p'
z,z T t t
SiSk—> zakak + 2 ap_kap,+kapap, ,
k p.p’

which in continuum limit go into the operatorlike wave
functions 4, 1/1T, etc. as it is explained in [18]. After all
this algebra is done, we finally obtain for the XXZ case
the self-interacting Dirac Hamiltonian known as the mas-
sive Thirring model [18]. It is given by the Hamiltonian
of the following type:
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Ar=[lax y'x) ¥(x)

., d
ia O +Bm
+48 [ax gl i), Ga2)

where 2 X2 Dirac matrices are given by

1 0
0 —1

0 —i

a= =az7 B: i 0

=Ux

and o, and o, are the usual Pauli matrices. The parame-
ters m and A are related to K and g in a known way [18]
and L is the size of the system (in x direction). Statistical
mechanics can now be developed in 1+ 1 dimensions and
the semiclassical (high temperature) limit of the massive
Thirring model can be obtained exactly since the massive
Thirring model is exactly integrable in 1+ 1 dimensions
[17], so that the classical model based on Eq. (3.8) is also
exactly solvable. We shall discuss what all this actually
means below in Secs. V-VII, while in the meantime we
only would like to note the following. First, 1+1 free
(i.e., A=0) Dirac fermions coming from Eq. (3.12) are in
one to one correspondence with Dirac fermions of Sec. II.
The presence of interactions yields a mass renormaliza-
tion, whence it is possible to account for the effects of
nematic environment by studying the mass renormaliza-
tion effects. This will provide us with answers to the
questions posed in Sec. II. Second, as in Sec. II, the 1+1
version of the Dirac propagator can be replaced by the
3+1 version (this simply will account for the transversal
degrees of freedom of the polymer chain as discussed, for
example, in [11,13,37]). The field-theoretic methods lead-
ing to renormalization and critical exponents for a self-
interacting Dirac field in dimensions 2 <d <4 were re-
cently discussed in [42—-44]. The complete development
of the theory of nematic order using field-theoretic
methods is rather cumbersome and therefore we plan to
investigate its physical implications in a separate publica-
tion. For the moment, we shall concentrate on the alter-
native methods of studying this problem.

IV. THE ANALOGY WITH THE TWO-DIMENSIONAL
NONLINEAR o0 MODEL

It has been known for some time that the statistical
mechanics of quantum spin chains can be successfully de-
scribed in terms of the classical path integrals known as a
nonlinear ¢ models [19]. In fact, Eq. (3.1) is already a
special type of o model. More generally, the functional
integral for the nonlinear o model can be written as [12]

1= [D(u(x) [] 8(u*(x)— 1 exp{—S[ul} , @.1)
where
S[u]=ixfd2ra u6“u+ﬁfd2x£’”u-a ud,u. (4.2
2 # 8w oY )
The O term is formally the total derivative [19] and
plays no role at the classical level while at the quantum

level this is no longer the case. We demonstrated in an
earlier work [21] that inclusion of the winding number
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(also the total “time” derivative) in the corresponding
Gaussian path integrals leads to nontrivial effects at the
quantum level and we find this is also true here. It was
also shown in previous work [1] that the one-dimensional

u(N)=u
GD(r,r’;uf,u,-;N)= f '

w(0)=u;

1 N du
X exp 2Kf0 dr dr
where A (u(7)) is defined [19,20] as
N du _ o (¥ (Yira. | O A S
J dar A g2=e [ dr [ Tdru |2 A
4.4)

The above O term is written in a form given by Eq.
(4.4) for a special case of closed paths. If the paths are
open, some insignificant changes in the © term should be
made [45]. We ignore these changes, however, because
they are not going to affect our results for long chains.
Following Polyakov [20] and others [37,46], we shall call
the term
du , du

ar Nar

cum=["aru. 4.5)

the torsion of the curve. In our previous work [37] we
have emphasized that the torsion term is always nonzero
for nonplanar curves and is zero for planar. Hence this
term should always be present in the path integral action.
The reason it is usually ignored lies in the fact that it is a
total “‘time” derivative and at the classical level it can be
discarded. Recently, however, this term was considered
at the classical level in connection with problems related
to the elasticity of cholesterics in [47], while in [31] and
later in [48] it was shown that the path integral, Eq. (4.3),
corresponds to the propagator for the nonrelativistic
charged particle in the presence of the magnetic Dirac
monopole. We shall provide more details to these state-
ments below in Sec. VI. In the meantime, it is useful to
consider a slightly simpler problem in order to under-
stand the underlying physics better.

Let us first consider the planar rotator whose Hamil-

tonian A ¢ is given by
__1 a
By=——« el 4.6)

u
G(uf,u,-;N)‘—‘fu(o)

2
N du
‘ +i [ dr Alu(n)-—> ]

(N)=u, 1 N
—uy (u(7))8(u*—1)exp [—EKfo dr
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version of the nonlinear ¢ model including the © term
changes the propagator, Eq. (3.1), from bosonic to fer-
mionic (Dirac-like) so that the propagator for the Dirac
chain can be effectively written as [45]

Dlu(rnsut~15 [r—r'~ [ "dru|

(4.3)

[

The dimensionless eigenvalues E; of the corresponding
Schrodinger  equation are given by E;=1I 2,
[=0,+1,%2,..., while the eigenfunctions are
W,=Vv'1/2wexplil$). Following Ref. [49], let us further
generalize the problem. First notice that the eigenfunc-
tions 9¥; usually obey the standard periodic boundary
condition, i.e., ¥;(¢+27)=V¥,(¢). More generally we
would require

Y, (¢+27)=exp(—iO)¥,(d),

4.7

where 0 < 6 <2, and this leads to the wave function

172
6

=|— j [l —— , 4.8

¥,(¢) Py exp |i |l . ¢ (4.8)
while the energy eigenvalues are changed into

1 6
E=— |]——2 4.
) 2T 4.9)

As we discussed in our previous work, Ref. [21], it is
more advantageous sometimes to replace the boundary
conditions, Eq. (4.7), by the standard periodic ones at the
expense of replacing the simple Hamiltonian, Eq. (4.6), by
2

o_, 1|, d , 0
6K ld¢+277' (4.10)
At the classical level this yields the Lagrangian
2
= Ll||4% | L 6 d¢
L, K> 2 +2‘n' ar |- (4.11)

Evidently, the last term is a total time derivative and thus
can be discarded. This is not exactly the case at the
quantum level in view of Eq. (4.9).

The corresponding Euclidean path integral corre-
sponds to the problem of diffusion on a unit sphere (circle
in two dimensions). It can be written as [37,38]

2
.0 N, d —1 | %
+io— fo dr—dT tan”! | —

du

dr

] (4.12a)

X

and it differs from that discussed in our earlier work [21] only by an additional & constraint. Without this constraint,
the path integral, Eq. (4.12a), describes the Brownian motion on the plane in the presence of a hole while the presence
of this constraint constrains the random walk to the circle. In the planar case, the 6 term reflects the strengths of in-
teractions between the Brownian particle and the hole while in the case of a circle this term represents the degree of
mapping of a circle into itself and is responsible for the change in statistics as we are about to demonstrate (we have also
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briefly discussed this fact earlier in [10,21]). In two dimensions we use 6 instead of ©.

To this purpose, let us introduce the generating function

<exp [ip'fONu(f)dT]>=3fu'=ufD(u(T))8(u2—l)exp [_%KfoNdT

X exp [ip~fONu(T)d7'} ,

2
du
d

0 (N, d . -1
+12ﬂ_ fo drthan

i

(4.12b)

where the normalization $ is chosen in such a way that for p=0 we have { ) =1. Using Eq. (4.12) and results of Po-

lyakov [20], let us consider the following expansion:

(exp [ip.foNu ]>=1—ip.fON<u(7-))dr—paprONdrfonT'(ua(T)uB(T’)>+ .

where a,B are the Cartesian coordinates. By symmetry,
the first term vanishes while for the second term we have

Cug(Pug(r)) = (OluglIXIuglo)e
150

—(E;—Eg)|lr—7lxk

(4.14)

The right-hand side of Eq. (4.14) was explicitly calcu-
lated in [49] [e.g., see Eq. (2.14) of this reference] so that
we have (for 0<6=1)

(ug(Tug(r'))
- 1 LS PRCAN [
_8‘181;0 2 exp 21 ! - l7—+|| . (4.15)

For 6==x7 and /==1 the term in the exponent van-
ishes and, for |[r—7'|— o it becomes the leading term in
the expansion of the correlator. Using this fact in Eq.
(4.13) produces

(exp [,‘p.fONu}>=1—Pz—2—N2+O(p4). (4.16)

The same result can be obtained following Polyakov’s
ingenuous trick [50] (which was later on proven rigorous-
ly in [51]). The trick lies in the fact that, instead of u
averaging defined in Eq. (4.12), one can perform spin
averaging by using properties of Pauli matrices o; (e.g.,
compare with Sec. II):

Tro;=0 but Tro?= (4.17)
If we formally write
(exp ip-foNu ])E( expip-oN), , (4.18)

then, when the right-hand side of Eq. (4.18) is expanded
and the traces over o,’s are taken, the result, Eq. (4.16),
is recovered. Equation (4.18) is proven rigorously in [51]
and is based on the observation that the Seret-Frenet
equations for the moving frame along the curve have the
same mathematical structure as equations of motion for
the precessing spin (as it was already noticed and used in
our earlier work [37]).

Laplace transforming the right-hand side of Eq. (4.18)

produces

(4.13)

X _ N . _ 1
fo e *¥(expip-oN), <ip-a—s >U , (4.19)
which has to be compared with Eq. (2.6). Obviously, Eq.
(4.19) describes the Dirac propagator in d =2.

The above analogy with the Dirac propagator exists,
however, only for a special value of 8: 6=mw. For 6%
the analogy is lost, but the relevant physical results such
as Eq. (4.15) are not much affected. Indeed, if we were in-
terested in calculating (R?), then using Eq. (4.15) and
keeping only the |/|=1 term the ground state dominance,
which is permissible in the limit |7—7'| — o, we obtain

1 kOt

h
cosh |~

1
— KT

(ug(T)ug(0)) =8,52 exp 5

’

(4.20)

which coincides with Eq. (4.5) of [49], as expected. The
(R?) can now be obtained in a standard way (e.g., see

[52]):
2y [N, (N _ =Tl
(R?) fodrfod'rZexp L — ]
X cosh K—9—|T—T‘|]
27
=2a3p(x,)+2a3p(x,) , 4.21)
where
g =—2 kN 2 . _DN«
Y a—-e/a) Y ey TP (+6/0) T a,
(4.22)

plx)=x —1+ exp(—x) .

Let us consider now two limiting cases: 6—0 and
6—m. For 6=0 we obtain a,=a, and x;=x,. From
this we retrieve the standard Kratky-Porod (KP) result.

Let now 0—7 and N—>o© but eN <<1 where
e =1—0/m. Using Eq. (4.21) we obtain
2 2
N~ ]2 N N 1 |N
= — —_— — —_—— —_ | — + “ ..
(R?)=2 " e—1+1 5 e+ S 17
+2[N —1+ exp(—N)]—N?2. (4.23)
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From this, the parameter 6 is effectively responsible for
the rigidity of the chain. This can be accomplished as
well by the use of the Dirac propagator, employing Egs.
(2.5), (2.6), and (4.19), if the proper identification is made.
For instance, if we identify is in Eq. (4.19) with im [e.g.,
see Eq. (2.6)] and take into account that the Laplace vari-
able in particle physics is always treated as the mass [12]
and, in addition, we identify one of the p components
with the variable conjugate to “time” (polymer length).
This can be achieved either by restricting one of the p’s to
p >0 or by adding a small *ie term to the mass to assure
that the corresponding Green’s function is retarded (as it
is always done in field-theoretic calculations [36]). There-
fore Eq. (4.12b) acts effectively as a Dirac propagator for
0=<60=m and becomes strictly Dirac in the limit §=1.
For 60,7 Eq. (4.21) does not provide the KP result for
(R?) whereas Eq. (2.5) does recover this limit as demon-
strated in [11]. The deviations from KP are naturally
negligible in the limit N — «. Finally, even for §=0 the
result given by Eq. (4.23) can be obtained. In this case for
1/k—0 we would obtain the result given by Eq. (4.23).
Formally, we can regulate the rigidity either by changing
k for fixed 0 or by changing 0 for fixed « (of course, we
also can change both 8 and k at the same time). In the
literature it is common to associate the Dirac propagator
with the case when 1/k— « (e.g., see [20]), whence the
rigidity effects in this traditional case are being regulated
by 6. Equation (4.20) deserves also a discussion with
respect to renormalization of bending rigidity. Rewriting
the cosh in Eq. (4.20) in terms of two exponential func-
tions it is seen that the stiffness becomes renormalized,
ie.,

6

(uy(T)ug(0)) <8, gexp l——%x li;

T } . 424

In view of Eq. (4.23), the other term is not important for
N— . Therefore the chain has become effectively
stiffer by the presence of the 0 term, i.e., kg =«(1+6 /7).

V. SCHRODINGER-LIKE EQUATION ANALYSIS
OF THE NONLINEAR o MODEL IN EXTERNAL FIELDS

In the preceding section we have introduced the Ham-
iltonian for the planar rotator H ¢ given by Eq. (4.6).
Consider now the stationary Schrodinger-like equation
for the Hamiltonian A ¢ in the presence of the nematic
and the elongation fields. In this case we obtain
1 d?

— —k—— +g cos’x +f cosx

2de2 (5.1)

Y=E¢,

where 0=x <7 and x =4¢, e.g., see Eq. (4.6).
Use of Eq. (4.10) produces instead

1, d 1 i0d 1 [6
2 dx?2 2 wmdx 2 |2w
+gcos’x+fcosx [y=E¢ . (52)

Using the fact that cos?x =1(cos2x +1), Eq. (5.1) can be
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brought into the standard form of the Whittaker-Hill
equation [25] while for f =0 we have the case of the
Mathieu equation [26]. Following [52] and using substi-
tution (for simplicity, we set k=2)

27Tx (5.3)

Y=w(x)exp

in Eq. (5.2) removes the unwanted 6 terms and brings Eq.
(5.2) back to the form of Eq. (5.1). These results need to
be compared with that discussed in Sec. IV.

Consider now the three-dimensional Schrodinger-like
equation discussed in [15] by WGB [e.g., see Eq. (4.5) of
[15]]. Writing in this equation A, +A%= — E we obtain

v=Ey, (5.4)

2
[52—2 +cotx% —g cos’x
where we used x instead of 0 and g instead of A? used in
this reference.

We would like now to demonstrate that Egs. (5.1) and
(5.4) are mathematically closely related [of course, we
have to set f =0 in Eq. (5.1) or to add the corresponding
term in Eq. (5.4)]. To do so, following [53] consider the
substitution =2z (x)V'sinx in Eq. (5.1). This produces

dz d 2 1 1
dx2 coxdx g COs™x 4

% sin’x z(x)=Ez(x) .

(5.5)

This equation is different from Eq. (5.4). However, it is
a physically correct equation which is related to the
Dirac monopole (see next section); Eq. (5.5) is also known
as the associated Mathieu equation and is a special case
of a spheroidal wave equation [54]. It should be noted,
however, that the spheroidal Eq. (5.5) is not the same as
Eq. (4.3) of [15] which the authors also call “‘spheroidal.”
Moreover, Eq. (5.4), is not the same as the Schrodinger-
like equation for a double well discussed in Sec. II in con-
nection with the 1D Ising model describing hairpins. On
the other hand, Eq. (5.1), is for small x the desired double
well equation for the hairpins. Indeed, expanding cosine
terms in (5.1) we obtain approximately

1 d?

——k——ax*+a,x* |y=Ev¢,

K (5.6)

where a;=g+f/2, a,=-=La,. Therefore Eq. (5.6)
reduces to the double well equation under conditions
where this expansion is appropriate. Formally, Eq. (5.6)
provides the answers to questions posed in Sec. II. Ex-
pansion of cosine terms is not too illuminating, however,
in the light of a wide literature discussing Mathieu and
Whittaker-Hill equations. For illustrative purposes, we
shall confine ourselves (only in this section) to the qualita-
tive discussion related to the Mathieu equation, i.e., Eq.
(5.1) with f=0. This equation is known in physical
literature [29] in connection with problems which involve
chaos. This is not accidental in view of the analysis of
the XXZ model presented in [41]. The physical picture
can be described as follows. Let the coefficients a, and a,
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be initially zero. Then the eigenfunctions given by Eq.
(4.8) (for k=2) are the correct unperturbed eigenfunc-
tions. Now let a; and a, (or more generally g) be
nonzero. In this case, the eigenvalues and eigenfunctions
get perturbed. Among the perturbations only those are
admissible which do not violate the condition given in Eq.
(4.7). This leads to the conclusion that not all values of
the parameter g (and also f if it is nonzero) are permissi-
ble. The system will not respond to perturbations from the
forbidden region of values for g. In cases (other than ours)
when the values of g from the forbidden region are used,
the chaotic behavior is observed.

Let us make the above arguments more precise. Fol-
lowing the mathematical literature on these classical
equations [30,53], we rewrite Eq. (5.1) in the standard
form:

(5.7)

where §=(2/k)(—g +E), 2e=(1/k)g, and the function
¥ is subject to the boundary condltlons given by Eq. (4.7).
In view of [15], some minor rearrangements were made to
arrive at (5.7). For instance, because of Eq. (3.9) and tak-
ing into account that we are studying a two-dimensional
planar problem first, the factor of 3 in Eq. (3.9) is re-
placed by factor of 2, etc.

Since Eq. (5.7) is a second order differential equation,
we expect that it has two solutions. Let ¥, and 1, be its
solutions. Then, both of them should satisfy Eq. (4.7).
However, if we change x —x +, Eq. (5.7) is obviously
unchanged. Thus among solutions of Eq. (5.7) there
should be those possessing period 7. Evidently, such
solutions will have a period of 27 and, whence, could be
made to satisfy Eq. (4.7). The wave function, Eq. (4.7), al-
ready has a standard Floquet form [30,55] which is used
in the theory of Mathieu and Hill equations, i.e.,

i xlox), (5.8)

Y(x)= exp Py

where the function ® is periodic with natural period 2.
Obviously, two major periods are of importance:
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view of Eq. (4.11), the classical action can be written as

S= foz”d

where V(1) is the periodic function of 7, e.g., cos2t, and
8 is equal to 6/47. We just demonstrated therefore that
the underlying physics of the hairpin problem is exactly
the same as in the theory of C-I transitions for which an
enormous literature exists [24]. This is not too surprising
in view of the fact that both problems stem from study of
the same XXZ model [23] and admit the same fermionic
(exact) and approximate bosonic quantum many-body
treatments (see, for example, [56] for bosonic treatment).
The analogy with C-I transition is formally lost when the
three-dimensional case is considered but, in view of Egs.
(5.1) and (5.5), we still can use the Schrodinger-like equa-
tion of the type given by Eq. (5.7). Because of this, it is
worthwhile to investigate this equation based on results
known in the mathematical literature.

In the spirit of the Floquet theory [30,55] let us write
0/27=pB'". Evidently, the perturbations caused by the
nonzero g will change B, i.e., we anticipate B=p(g) and
B(g =0)=pB?, whence, in complete agreement with gen-
eral analysis of Secs. II and IV, the presence of nematic
interactions is expected to lead to the renormalization of
the rigidity parameters so that knowledge of the explicit
form of B(g) provides the answers to the questions posed
in Sec. II.

For simplicity, let us fix the initial rigidity parameter,
k=2, and let

¥y, = exp(£ifx)P, 5(x) .
Substitution of Eq. (5.19) into (5.1) produces

2
dd2<1>12+2zB @, ,+(8—B*—2e cos2x)®,; ,=0 .

2
] ' +V(r) (5.9)

(5.10)

(5.11)

For small g we look for perturbative solutions of Egq.
(5.11) of the form

@, 5(x,8)=DV(x)+edV(x)+ -+,

(caused by perturbation) and 27 (natural frequency) and 8(x,e)=8"+ed! '+ -, (5.12)
therefore we sl}ould expect a situation similar to that Bix,e)=BO+efV+ - .
encountered in the theory of commensurate-
incommensurate (C-I) transitions [23,24]. Indeed, in  Substitution of Eq. (5.12) into Eq. (5.11) produces
]
(q>°+sd>“ + 2O+ N+ )L (@O ed V4 - )
d 2 dx
+[804+e8V—(BO+eBV+ - - - 26 cos2x (PP +edV+ - )=0. (5.13)
Collecting terms we obtain
2
80: ;d—2<1>(0>:t2i[3(°’—4—d)(°)+[8(0)—(3(0))2]4)(0)" (5.14)
X
81: dd 2¢(1)+213(0)_d_q> 1)+[8(0) B(O) ]¢(1)—+216 1) d (I)(O 8(1)(I)(O)+2B(O)B(l)¢(0)+2‘I>(0)0082x . (5.15)

The solution of Eq. (5.14) produces again Eq. (4.8) as required. In order to use Eq. (4.8) in Eq. (5.15) it is useful to no-
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tice that solution ®© can be formally written as

®\9=gq cosix +b sinix ,
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(5.16)

where at the end of the calculations one can set @ =b and determine a by normalization condition as usual. Notice that
both cosix and sinlx would fit Egs. (4.7) and (5.8), (5.10). If we use Eq. (5.16) in the right-hand side of Eq. (5.15), then,
for example, for / =1 we obtain for this equation the following result:

2
el: %q>“>iziﬁ‘°>d%q><“+[a‘°>—(/3<°’)2]<1>“’=i2i3“>( —asinx +bcosx ) — (8" —2B 9B 1) (acosx + bsinx )
x
+2(a cosx +b sinx) cos2x . (5.17)
[
Using the trigonometric relations, Noticing that, by construction 8% < 1, we obtain
=1 0)
cosx cos2x =1[ cos3x + cosx] , Bil)= B it =L [1—(517]
. _ . . ’ 2[1_(3(0))2] (ﬁ(o))z
sinx cos2x =1[sin3x —sinx] , 1
72
and requiring the secular (i.e., proportional to sinx and X[1—(B©)]2 )
cosx) terms to vanish [30], we obtain the following sys-
tem of equations: (5.25)

+2ifVa — (8" —2898"V+1)b =0,

(5.18)
— (8" =288 —1)a+2iB"Vb =0 .

By requiring the determinant of the above system of
equations to vanish, we then obtain

4B —[(8V =292 ~1]=0 . (5.19)

The consistency check requires us to set B0=0 first.
This then implies

=41V ]

in complete accord with [30] [see Eq. (11.107) of Ref.
[30]]. Equation (5.20) is very interesting because it re-
quires 8> 1 in order for Eq. (4.7) to hold. To put this
in another form is to say that S is not allowed to acquire
an imaginary part. In the theory of dynamical systems
such an imaginary part yields an instability and leads to
chaos [29]. In our case, using Eqgs. (5.7) and (5.12) we ob-
tain effectively

8(1)-:8(1)_2 ,

(5.20)

(5.21)

where, again in complete agreement with [30], the factor
8V is left undetermined (i.e., it can vary without restric-
tions in the physically allowed domain to be discussed
below). Using Eq. (5.21) in (5.20) we have to require

(82— 48V +3>0 . (5.22)

This produces 0<8"<1 and §">3 and, accordingly,
using Eq. (5.12), the transition curves emanating from
8=1 are

5=1+e+0(c?) . (5.23)

This result is in complete agreement with that obtained in
[30], as required. Now let B{®540, then using Eq. (5.19)
we obtain
8(1),3(0) 1_(8(1))2
( (1))2+ (1)+ =Q.
B 1_(3(0))23 4[1_(B(0))2]

(5.24)

Because B'¥ <1 and 8V>1, by construction, the result
for BV is real and therefore makes physical sense.

Let us make some qualitative remarks on some elemen-
tary physical applications of the results obtained so far.
To this purpose let us analyze the behavior of the correla-
tion function defined by Eq. (4.15) in the absence of per-
turbations.

Taking into account Eq. (4.9) and rewriting it in nota-
tions used in this section we obtain

E, =%(\/§1 —B)* .

We have supplied § and B with subscript / because the
above quantities are actually / dependent as can be seen
from the deviation given above. Evidently, we have

8, =1*+e8V+e%P+ -,
BI=B(O)+£B(11)+EZB(12)+ cee

where B©=0/27. Consider now the difference between
1 and the ground state E;—E, with accuracy up to
O(¢):

Ey—Eo=4{1-28+2¢f(8{", 81", 8,81 ,

(5.26)

(5.27)

(5.28)

where f(8{V,8{1,B8,8()) is a linear combination of the
above coefficients (we have taken into account here that
8V=0 [30]). Using the results of Sec. IV, we know that
for 28/®=1 the polymer chain is fully stretched and
behaves as a rigid rod. Now, under the action of pertur-
bation, several things could happen: first, if 28’ was ini-
tially less than 1, then the perturbation can bring it to 1,
in principle. In view of Eq. (5.23), this process may be
discontinuous because both &{ and B{", as well as 8’
have branches so that when g increases (decreases) one
expects to observe a conformational jump which can be
interpreted as hairpin destruction (creation). [The above
process is also related to the nematic-(stretch) isotropic
(coil) phase transition [57].] In the last case one usually
studies the behavior of E|, related to the free energy of
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the system [57]. We plan to give a detailed treatment of
these processes in future publications while here we
would like to provide an additional physical application
of the obtained results. To this purpose, let us consider
once again Whittaker-Hill (WH) Eq. (5.1). For f50, fol-
lowing [27], let us rewrite Eq. (5.1) by rescaling the vari-
able x to 2x in the form

2
%¢+[}\.+4mq cos2x +2g%cosdx]yp=0,  (5.29)
X

where A =48, 2q2= —8¢, 4mq = —4f, and m is so far an
arbitrary real number. From the theory of WH equations
[27] it is known that (a) in order for the periodic solution
to exist, 2% must be non-negative and (b) it is possible to
have two linearly independent periodic solutions, if, and
only if, m is an integer. The first requirement forces us to
change € into —¢ in Eq. (5.29) and then also in the rest of
our calculations. We have checked that up to O (e!) this
causes no change in our results. The higher order (in €)
terms are different (in general) [25,30]. It is important to
realize that this requirement to change € into —¢ is possi-
ble to detect only if an extra f term is considered. Be-
cause the authors of [15] have not included the f term,
our treatment presented above faithfully followed their
initial assumptions. The fact that m must be an integer is
also rather remarkable because it tells us that the external
(non-nematic) stretching force should be quantized. There
is no such requirement in the absence of a nematic matrix
as we have demonstrated before [1].

Further studies [25] have shown that if the 2¢2 term in
Eq. (5.29) is negative, then it is also possible to obtain
periodic solutions. For such solutions the non-nematic

J

<exp [tp u('r)dr]> Sf D(ll(T ))8(u2—1) exp [__Kf dr

lpf d’r},

X exp

where C(u(7)) is defined by Eq. (4.5) and, as before, the
normalization factor ¥ is again chosen such that { ) =1
for p=0.

Although there is a large amount of literature on path
integrals given by Eq. (6.1), for our purposes we shall
select only those papers that are directly connected with
the results presented in Sec. IV. The earliest observation
that the path is integral, (6.1), with p=0, is related to the
Dirac magnetic monopole that was made in [54]. In [31]
this treatment was somewhat refined while further details
of this refinement appeared in [48]. Because of the exist-
ing literature, we provide only an outline of results need-
ed for the reading of the rest of our paper.

Begin with the observation that the tangent vector u

can be presented in the form [12,48]
u=(z'oz) , (6.2)

where z is two-dimensional complex vector z=(z,z,)

3983

force is not discrete and these solutions are quite different
from those which correspond to the case when 2¢? is pos-
itive. Physically, the first case seems to be more accept-
able because the discreteness of force can be attributed to
the discreteness of the hairpin energies, i.e., by stretching
the polymer chain the hairpins are destroyed one by one.
Whether or not this is correct can only be resolved exper-
imentally. We hope that such experiments will be per-
formed in the future.

This concludes our qualitative treatment of the two-
dimensional case. It is of interest now to see to what ex-
tent the results obtained so far could be preserved in
three-dimensions. This is a topic of the next section.

VI. NONLINEAR o0 MODEL IN THREE-DIMENSIONS
AND THE DIRAC MONOPOLE

In the preceding section we have obtained Eq. (5.5)
from Eq. (5.1) by the appropriate change of variables.
The presence of a term ~ 1/sin’x is crucial in bringing Eq.
(5.5) into the form of Eq. (5.1), which admits a double
well interpretation. In the treatments existing in the
literature this term is completely ignored. Here we
would like to emphasize that the presence of this term is
motivated by much deeper reasons than just reduction of
Eq. (5.5) to Eq. (5.1). Its origin can be traced to the
Wess-Zumino term [19,20], Eq. (4.4), which must be
present in three-dimensional path integral Eq. (4.3) due to
nonzero torsion for three-dimensional curves as it was ex-
plained in [37] and Sec. IV.

In complete analogy with Eq. (4.12), we introduce the
generating function (in three dimensions)

2

4w | 16 [Mar cluin)
0

(6.1)

f

which is normalized to unity and o, as before, Pauli ma-
trices. Because (0;)*=1 we then obtain

ui=|z,|>+]z,[|*=1 (6.3)

as required. Furthermore, if z,=x;+ix, and

Z,=X3 +iX4, then

0 1] |*1tix;
up=(x;—ixy,x3—ixy) [ o x3+ix,
=2(x,x3+x,%4) , (6.4)
analogously,
Uy =2(X X4 —X3%x3), 6.5)
uy=x?+x3—x3—x2, (6.6)

and, from Eq. (6.3), we also have
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x3+xi+xi+xi=1 6.7)
If now

z,=eXcos0/2, z,=e'?tVsing/2 , (6.8)
then a little algebra produces straightforwardly

u,;=sinf cosg ,

u,=sinfsing , (6.9)

u;=cosf .

With such parametrization, let us consider the term
(du/d7)? in the exponent of Eq. (6.1). It is shown in [48]
that

2=23'7—2qa? (6.10)

la
2
where
a=iz'z (6.11)

and the dot denotes the derivative with respect to the pa-
rametrization d /d 7, as usual. For p=0 the actlon in the
exponent of (6.1) can be written as

s=fo dr[2«{(z'2)—a?}—26a], (6.12)

where 20=0,%+1,+2. Notice that unlike the two-
dimensional case, © must be quantized in three dimen-
sions. Introduce now the matrix s via

ei(a+'r)/2 COSB/Z ei(y—a)/zsinﬁ/z

s= i X .
—e iy a)/ZSInB/z e l(a+’y)/200sB/2

(6.13)

where a,f,y are Euler’s angles. It can be shown that

tr(s's)=22"2 (6.14)
and

a=1ltr(oss7'8) . (6.15)
Because of these relations, it is possible to write

tr(3'8) =142+ L(y +a cosB)*+ La’sin’B . (6.16)

Note that this expression coincides exactly with that for
the kinetic energy of a symmetric top [e.g., see Ref. [58],
Eq. (4.8.3), where one has to set the inertia moments
I,=1I,]. By combining Egs. (6.12)-(6.15) it is possible to
show that the Lagrangian for the action, Eq. (6.12), is
that for the three-dimensional symmetric top but with
the square of the third angular component being sub-
tracted. Quantization of such a Lagrangian then
proceeds in a usual way, i.e., through the Hamiltonian
formalism.

To illustrate the above ideas, consider the Schrédinger
equation for the fully symmetric top [58] first. We obtain

@ 8.1 [ @ 3
+ —_ —_
a8t 98 B |22z T a7 2P aaay
+1(1+1)‘ (a,B,7)=0, (6.17)
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where functions D/} (a,b,g) are the usual Wigner D func-
tions defined by

”) a,B,7)= exp(zma)d‘” (B)expliky) . (6.18)
Substitution of Eq. (6.18) into Eq. (6.17) produces
mi+ki—
. L tootgt — Tk 2mkeosh 1y 4y
dp? dB sin’B
xd{h(B)=0. (6.19)

Finally, let us write k2>=k2cos’8+k?in?8. This pro-
duces

d d | (m—kcosB)? | .0
————cotf— - +— T |d
dp? BB sin?B me(B)
=[1((I+1)—k21d2(B) . (6.20)

Equation (6.20) coincides exactly with Eq. (2.2) of Wu
and Yang [59] for the magnetic Dirac monopole. In view
of this result, and taking into account Ref. [60], we reach
the following conclusions. First, the presence of the ©
term in Eq. (6.1) is responsible for k subtraction in the
right-hand side of Eq. (6.20). Second, the parameter © is
associated with k, i.e., ©=k. Third, k and [/ can have in-
teger or half-integer values. The smallest half-integer

value of k is £(1). For this case it is known [58] that

d\2 ,(B)=d % _, ,(B)=cosB/2, i.e., there is a de-

generacy. In analogy with Eq. (4.13), we expand the p ex-
ponent in Eq. (6.1), then, because of this degeneracy, in
the limit |[7—7'| — o we will end up with the same result,
Eq. (4.16), and Eqgs. (4.18), (4.19) follow [20]. An alterna-
tive proof can also be found in [51]. Notice, if k were *+1,
we would also have a degeneracy, e.g.,
d(lll)(ﬁ)=d(_”,_1([3)=%(1+cosB). But this time there is
also another intermediate state with kK =0 and therefore
the arguments leading to Eq. (4.16) would not be applica-
ble. At the same time, the result of the type of Eq. (4.19)
would still hold, e.g., see [51]. For k values other than
t1 we obtain [using Eq. (6.1)] propagators for particles
with higher spins. Our experience with the two-
dimensional case (even though limited because 6 is not
quantized) suggests that these higher order spin propaga-
tors may be responsible for the stiffening of the chain.
This is also important for the development of the topo-
logical theory of reputation as indicated in our earlier
work [21,61].

Now let m =1=k in Eq. (6.20) (i.e., Dirac equation
case); we obtain

d? 2B /2)
_d—Bz—COtBﬁ_’_—'tan ~ d 1/2(3)

=Ed\"%,(B). (6.21)
Historically, this equation was obtained by Dirac himself
[e.g., see his Eq. (13) of Ref. [62]]. Moreover, given that
Eq. (6.20) originates from Eq. (6.17), it is possible, follow-
ing [63] to redefine the angle ¥ in such a way that the re-
sulting (6.21) will acquire the form
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d? d 1 o5l ,002
_—dE{—COth_ﬁ“*'ICOtB d1/21/2(B)
=Ed(11/221)/2(3) ’

which, incidentally, coincides exactly with that used in
[64] [e.g., see Eq. (29) of [64] ]. Obviously, Eq. (6.22) can
be reduced to Eq. (5.5) (for g =0) and, therefore, the con-
nection with the Dirac equation is established. Therefore
the double well potential picture of hairpins proposed by
de Gennes [6] and developed by others is directly connect-
ed with the Dirac equation and Dirac monopole.

(6.22)

VII. BEYOND THE DIRAC MONOPOLE

The results presented in Sec. V involve perturbative
‘methods which require the nematic coupling constant g
to be small. If this is not the case, other methods should
be used. Here we would like to provide only an introduc-
tion to these methods, leaving detailed calculations for
further study.

Following Mozer [65], let us consider first the classical
motion of a “particle” constrained to the sphere. The ac-
tion (k=1) for this case is given by

2
=1 N, |du N 2
s=o[ldr |~ |+ [dranw =1, @1
Minimization of Eq. (7.1) produces
i, =Au; . (7.2)

The Lagrange multiplier A can be determined now using
the fact that

_‘}d? [2 u? ] =0, (7.3)

or
u-u=0, (7.4)

with the overdot being the usual scalar product. Using
Eq. (7.4) we then obtain

d ._ .. .
—u-u=u-atu-i

dr (7.5)
while using Eq. (7.2) we have the simple relation

u-i=A. (7.6)
The combined use of Egs. (7.2), (7.5), and (7.6) produces

;= —(a-0)y; . (7.7)

We generalize this result by including quadratic pertur-
bations, e.g., such as the “nematic type” in Egs. (3.8),
(3.9) which leads to an equation of motion having the
form

i, =Au; —gu; , (7.8)
where anisotropic perturbations in all Cartesian direc-
tions are included for generality. By using Egs. (7.5) and
(7.8) we obtain
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A=(gu)u—u-u, (7.9
where g is the diagonal matrix
g, 0 O
g=|0 g O
0 0 g3
Substitution of Eq. (7.9) into Eq. (7.8) produces
i;=(gu)uy;, —0-0u; —gu; . (7.10)

If the term @-u were zero (or constant), then the equation
obtained would become a nonlinear Schrodinger equa-
tion, which is well studied in the theory of solitons [23].
Remarkably, the problem described by Eq. (7.10) was
solved exactly already in 1859 [32] and is known in the
mathematical literature as the Neumann problem (or
Neumann model). Following [66], let us rewrite Eq. (7.8)
in the equivalent form
2

?:;—Zs+gs=7ks,
where obvious redefinitions have been made. Next, we
rewrite Eq. (7.11) as

s2=1 (7.11)

2

d
SA [—=s+gs | [=0 (7.12)
dx? &

since [s AAs]=0. Let us recall that the Landau-Lifshitz
(LL) equation in the theory of ferromagnetism can be
written as [67]

2
i—s+gs

2
I =1.

Es——‘ sA , S (7.13)

Equation (7.12) represents the static case of the LL equa-
tion and the traditional hairpin calculations are special
cases of the LL equation. Let us now consider a time-
dependent case of the LL equation.

Following [66], let us look for a special type of solution
in the form s(x,z)=u(c —ift). Using this form in Eq.
(7.13) we obtain

—igu=[uA(i+gun)], uv’= (7.14)

Taking the vector product of both sides of Eq. (7.14) we
obtain

i+gu=Au+if[aAu], (7.15)
where A, as before, is given by Eq. (7.9). Equation (7.15)
is the same as the equation which can be obtained at the
classical level from Eq. (6.1) (with p=0 and quadratic in-
teraction term included) and describes the motion of a
charged particle in the presence of the Dirac magnetic
monopole [63]. This problem (at the classical level) was
solved exactly in 1892 by Kotter [33]. At the quantum
level, it would correspond to a special case of solutions to
the quantum version of the LL equation. Both the classi-
cal and the quantum versions of the Neumann model
were recently reconsidered [68] and the existing
mathematical literature on the classical Neumann model
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alone is enormous (e.g., see [69], and references therein).
At the same time, the quantum Neumann model was only
recently formulated [68,70] but not solved. In view of
their perturbative nature, the derivations presented in
Secs. V and VI are not identical to that given in Refs.
[68,70]. It would be of interest to establish the
correspondence. This is left for further work. In addi-
tion, Kotter’s problem falls into the category of
Neumann’s. This is so, because of the following observa-
tion. In the absence of quadratic perturbations, the clas-
sical Hamiltonian of our problem is that for the fully
symmetric top, e.g., see Eq. (6.16). In the presence of
quadratic interactions the total Hamiltonian for
Neumann’s model can be written as

- 2

H'=1[M’+u-gu], (7.16)
provided that the Poisson brackets are

{M;,M;}=¢; M,

(M, u;} =¢u; , (7.17)

{uju;}=0,

where M is the angular momentum.
For the Dirac monopole problem, following [66] one
can introduce the total angular momentum via

M=[iAu]+i6u. (7.18)

In terms of the total momentum the commutation rela-
tions, Eq. (7.17), remain the same. Complete solution of
the classical Dirac monopole problem is given in [66]. It
involves the ratios of the elliptic 6 functions and will be
analyzed elsewhere. Here, we briefly comment on some
physical aspects of this problem. It can be easily shown
that the system of Egs. (7.8) supplemented with the con-
stant 3,u7=1 can be obtained from the Hamiltonian:

3
H=1 3 gul+i[uy’—(uwy?]. (7.19)
i=1
The Hamiltonian equations can now be written as
u; =Yi>
C (7.20)

yi=—giu—u; [ S (gui—yi) ]|,
K

which obviously coincide with Eq. (7.10). It is easy to
show that the auxiliary variable y, is chosen in such a
way that the combination 3, u,y, is time independent if
3;u?=1[69]. So that if initially 3, u;y; =0, then for all
times u and y are orthogonal. It can be shown as well
[65,69], that the Neumann model has three independent
integrals of motion given by

(upy; —uy )
Fe=ul+ 3 AR TEVRT  p=q-3. (7.21)
i*k 8i — 8k
It is less obvious that H obeys the relation
=13 aF;. (7.22)
i

The most spectacular result based on Eq. (7.22) lies in the
fact that, upon canonical transformation [65]
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u'=y, y'=—u (7.23)
the new Hamiltonian is given by

H'=T3 a'F,

i=1

(7.24)

provided that in these new coordinates the spherical con-
straint is transformed into that for the ellipsoid:
2

U; =1
; i '

From this, effectively, the Neumann model is reduced
now to that of Jacobi (for rotation of the ellipsoid) which
has a classical solution in terms of the elliptic functions
that is well documented in classical mechanics texts.
This connection explains why Neumann was able to solve
this problem at the classical level more than one hundred
years ago.

VIII. DISCUSSION: HOW THE HAIRPIN PROBLEM
SOLVES RELATED PROBLEMS
IN CONDENSED MATTER AND PARTICLE PHYSICS

(7.25)

In this section we mention briefly hairpinlike problems
in various areas of physics (not discussed in the main
text) which mathematically are all interrelated. Begin
with the classical n-component one-dimensional Heisen-
berg model [40]. This model is believed to be exactly
solvable only in the limit of zero external magnetic field
and only for the case when J, =J,=J,=J, e.g., see Eq.
(3.6). The results presented in the preceding sections pro-
vide alternative ways of treating the classical 1D Heisen-
berg models. It is known [66] that the Neumann and
Kotter models originally came from two seemingly unre-
lated areas: celestial mechanics and mechanics of rotating
asymmetric rigid bodies in nonviscous fluids. Quantum
versions of these problems lead to the consideration of
the rotational Brownian motion of axiasymmetric bodies

‘in fluids. (A review of theoretical results on the rotation

of rigid bodies in fluids can be found in [71].) We believe
that the results obtained in this paper could be helpful in
developing rheological models of suspensions of aspheri-
cal particles. If the constraint on the rigidity of a rotat-
ing body is removed, then we may have something like
the time-dependent LL equation at the classical level. At
the quantum level the addition of an extra “‘time” vari-
able converts our one-dimensional problem to that nor-
mally discussed in the context of Wess-Zumino-
Novikov-Witten (WZNW) models [72]. In fact, as it is
shown in [72], at the classical level the spherical top is
just a zero mode of the WZNW model and the classical
mechanics treatment of a top parallels that of the
WZNW model. The Neumann (Kotter) problem be-
comes the problem of classical (quantum) deformation of
the corresponding Lie groups, as emphasized in [72]. In
view of Eq. (5.7), yet another relation can be found.
Indeed, if we wrote the corresponding path integral for
Eq. (5.7), and generalized the result to include the time
dependence, we would obtain a sine-Gordon field theory.
In Sec. III we emphasized the connection between the
XXZ and the massive Thirring model. This implies that
sine-Gordon and Thirring models are equivalent, a result
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established previously by Coleman [73] using different
methods. Because of this equivalence, the bosonization
of the Thirring model is possible, and this is related to the
fact that the Dirac propagator, given by Eq. (6.1), is ex-
pressible in purely bosonic language (i.e., without the use
of the conventional Grassmann variables). This fact has
its implications in string theory [74] where the newly pro-
posed version of the rigid string includes a sort of nemat-
iclike coupling similar to that used in this work. The rig-
id string model thus becomes a straightforward two-
dimensional generalization of the de Gennes hairpin
model. The de Gennes hairpin model has been used in
particle physics for some time. For example, in [75] the
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O(3) nonlinear o0 model in 1+ 1 dimensions was modified
(in the style of de Gennes) to study baryon- and lepton-
number violation in the standard electroweak theory.
Equation (A15) of [75] is exactly the same as in the
Warner-Gunn-Baumgirtner [15] model for hairpins with
similar implications and interpretation.
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